Pulse Storage Using Wavelength Multiplexed Holograms in Photorefractive Crystal.

Myungjun Lee, Ravi Pant, Michael Gehm, and Mark A. Neifeld

Department of Electrical and Computer Engineering
The College of Optical Sciences
University of Arizona

OUTLINE

1. Motivation and background
2. Photorefractive (PR) all-optical delay
3. Design study for wavelength multiplexing
4. Experimental results for angle multiplexing
5. Conclusions
Motivation

• **All-optical delay is important for many applications.**
 – Optical delay line/buffer
 – Synchronization
 – Jitter correction
 – Interferometry, spectroscopy

• **Many recent experimental demonstrations.**
 – Engineered resonances (photonic crystal WG, FP, FBG,…)
 – Stimulated gain/absorption processes (SBS, SRS)
 – Nonlinear methods (wavelength conversion/dispersion)
 – Stopped light (EIT in atomic vapor)

• **All of these systems seek**
 – Maximum tunable delay
 – Minimum pulse distortion (High data fidelity)
Background: PR effect

- PR holography is powerful for the data storage with high data fidelity.
- Photo-refractive (PR) effect

The gradient of the electric field is proportional to space charge. → \(\pi/2 \) phase shift

- \(\Delta n = \frac{1}{2} n^3 r_{\text{eff}} E_{\text{SC}} \)

where \(r_{\text{eff}} \) E-O coefficient
Holographic Recording & Readout

- Bragg selectivity enables to multiplex holograms. (Bragg condition: $\lambda = 2n\Lambda \sin \theta$)

- Information recording

- 3 objects, 3 different wavelengths ($\lambda_1, \lambda_2, \lambda_3$)
- n objects, n different wavelengths ($\lambda_1, \ldots, \lambda_n$)

- Grating efficiency,

$$\eta = \left| \frac{E_d}{E_s} \right|^2 \approx \text{sinc}^2 \left(\frac{2L\Delta\lambda \sin^2 (0.5(\theta_s + \theta_r))}{\lambda^2 \cos \theta_s} \right)$$

- Information readout

- Efficiency vs. $\Delta\lambda$

 L=6mm, $\lambda=500$nm, and $\theta_s=\theta_r=45^\circ$,
PR delay Technique

- PR system design,
 - Record

- Fractional delay, \(T_d = \frac{\text{Stored Time}}{\text{Pulse Period}} = \frac{\Delta T_d}{T_p} \)

- Wavelength conversion: SFG or SHG

- Amplified power decide system limit.

- PR materials have the maximum sensitivity at \(\lambda \)'s.
 \(\rightarrow \) SBN and BaTiO\(_3\) : \(\lambda \approx 500\text{nm} \),
 \(\rightarrow \) BaTiO\(_3\) and LiNbO\(_3\) : \(\lambda \approx 600\text{nm} \)

- Single bit \(\rightarrow \) Single hologram,
 - Multiple bits \(\rightarrow \) Multiplexed holograms

Input Data in fiber, \(\lambda = 1550\text{nm} \)

Synchronization for \(\lambda \) Multiplexing

\(\lambda \) or \(\theta \):

Signal
Reference

\(T_p \)

Reference for readout
PR delay Technique

- PR system design,
 - Retrieve
 - Fractional delay, \(T_d = \frac{\text{Stored Time}}{\text{Pulse Period}} = \frac{\Delta T_d}{T_p} \)
 - Wavelength conversion: SFG or SHG
 - Amplified power decide system limit.
 - PR materials have the maximum sensitivity at \(\lambda \)’s.
 → SBN and BaTiO\(_3\) : \(\lambda \approx 500\text{nm} \),
 → BaTiO\(_3\) and LiNbO\(_3\) : \(\lambda \approx 600\text{nm} \)
 - Single bit → Single hologram,
 Multiple bits → Multiplexed holograms

Reference for readout: all ones [1 1 1... 1 1].
Single Hologram Diffraction efficiency (DE)

- DE, power, and exposure time are important issues for the system design.
- The peak diffraction efficiency for single hologram
 \[\eta = \left(\frac{\pi \eta_q n^3 r_{\text{eff}}^e \alpha L PT_p}{2\varepsilon_s h c K A} \right)^2 \]

- DE for different pulse widths, using 13mm SBN75 crystal.
- Available power and exposure time decide system performance.

\[\eta \propto (PT_p)^2 \]

- For high speed, exposure time is small, requires high power.
- YDF(ytterbium-doped fiber) MOPA source
 \[\Rightarrow P = 15kW \quad [1] \]
 \[P=15kW \Rightarrow \eta = 10^{-4} \text{ at BR}=1\text{Gbps}. \]
- Commercially available detector sensitivity:
 \[-38\text{dBm} \Rightarrow \eta = 1.58 \times 10^{-7} \]

DE for multiple holograms at BR=1Gbps

- The DE for the mth hologram,
 \[\eta_m = \frac{\eta}{M^2} \left(\frac{t_m}{\tau_w} \right)^2 \exp\left[-\sum_{i=m+1}^{M} \frac{t_i}{\tau_e} \right], \]
 where τ_w, τ_e, and t_m are writing-, erasure-, exposure-time.

- $\eta_m \propto 1/M^2$

- Uniform efficiency for all holograms:

 Exposure schedule (ES) \rightarrow To make all of the diffracted output bits with equal intensity by appropriately allocating different power levels to each bit.

For 13mm SBN75, BR=1Gbps

<table>
<thead>
<tr>
<th>Power</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1kW</td>
<td>17 bits</td>
</tr>
<tr>
<td>2kW</td>
<td>35 bits</td>
</tr>
<tr>
<td>3kW</td>
<td>50 bits</td>
</tr>
</tbody>
</table>
Angle Multiplexing

- Now, Bragg selectivity enables to multiplex holograms with θ.

Experimental setup

- **Record**
 - Laser
 - Modulator
 - ND filter
 - BS
 - KNSBN
 - Motorized rotating mirror
 - Lens
 - Iris
 - Detector

- **Retrieve**
 - Laser
 - Modulator
 - ND filter
 - BS
 - Shutter
 - KNSBN
 - Detector

Experimental conditions:

- **6 mm KNSBN, $T_p=5$ sec**
- **Angular selectivity** $\Delta \theta = \lambda / a$
 \[\Delta \theta = 0.02^\circ (= 7 \times 10^{-4} \text{ rad}) \text{ for } a \sim 1 \text{ mm and } \lambda = 0.5 \text{ um, where } a \text{ is beam diameter.} \]

- **Synchronization**
- **Bragg matching**
Experimental results for angle multiplexing

- Record and retrieve 7 bits with different write and read power.
- NRZ pulse ($T_p = 5$ sec), $\Delta \theta = 0.02^\circ$.
- Storage time ≈ 120 sec (2 min).

Simulation and experimental results agree well.

Fraction delay ≈ 24

$$SNR = \frac{u_1 - u_0}{\sqrt{\sigma_1^2 + \sigma_0^2}}$$

- High $SNR \geq 10 \rightarrow$ Good data fidelity.
- No exposure schedule is used, so that grating decay is observed.
Conclusions

- All-optical delay systems require large delay with high fidelity.

- Experimental results for angle multiplexing show large tunable delay ($FD \approx 24$) with high SNR (≥ 10) for $T_p = 5$ sec.

- Design study for wavelength multiplexing shows feasibility of large delay. Under the given $P = 2kW$, 35 bits can be stored and retrieved at $BR = 1Gbps$.

- Sufficient large delay with good data fidelity is possible by considering long dark storage time.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GaAs</td>
<td>1msec</td>
<td>1.42bits</td>
<td>10^6</td>
</tr>
<tr>
<td>BaTiO3</td>
<td>10sec</td>
<td>17bits</td>
<td>10^{10}</td>
</tr>
<tr>
<td>SBN</td>
<td>1hour-30days</td>
<td>35bits</td>
<td>3.6×10^{12}-2.5×10^{15}</td>
</tr>
<tr>
<td>LiNbO3</td>
<td>Up to 1year</td>
<td>350bits</td>
<td>3.2×10^{16}</td>
</tr>
</tbody>
</table>

Summary for different PR crystals

We gratefully acknowledge the financial support DARPA DSO Slow-Light Program.